Technical documents
Specifications
Maximum Continuous Collector Current
21 A
Maximum Collector Emitter Voltage
450 V
Maximum Gate Emitter Voltage
±14V
Maximum Power Dissipation
150 W
Package Type
TO-220AB
Mounting Type
Through Hole
Channel Type
N
Pin Count
3
Transistor Configuration
Single
Dimensions
10.67 x 4.7 x 16.3mm
Minimum Operating Temperature
-40 °C
Maximum Operating Temperature
+175 °C
Product details
Discrete IGBTs, Fairchild Semiconductor
IGBT Discretes & Modules, Fairchild Semiconductor
The Insulated Gate Bipolar Transistor or IGBT is a three-terminal power semiconductor device, noted for high efficiency and fast switching. The IGBT combines the simple gate-drive characteristics of the MOSFETs with the high-current and low–saturation-voltage capability of bipolar transistors by combining an isolated gate FET for the control input, and a bipolar power transistor as a switch, in a single device.
Stock information temporarily unavailable.
Please check again later.
€ 18.53
€ 3.705 Each (In a Pack of 5) (ex VAT)
Standard
5
€ 18.53
€ 3.705 Each (In a Pack of 5) (ex VAT)
Standard
5
Buy in bulk
quantity | Unit price | Per Pack |
---|---|---|
5 - 5 | € 3.705 | € 18.53 |
10 - 95 | € 3.033 | € 15.16 |
100 - 495 | € 2.537 | € 12.68 |
500 - 995 | € 2.148 | € 10.74 |
1000+ | € 1.935 | € 9.68 |
Technical documents
Specifications
Maximum Continuous Collector Current
21 A
Maximum Collector Emitter Voltage
450 V
Maximum Gate Emitter Voltage
±14V
Maximum Power Dissipation
150 W
Package Type
TO-220AB
Mounting Type
Through Hole
Channel Type
N
Pin Count
3
Transistor Configuration
Single
Dimensions
10.67 x 4.7 x 16.3mm
Minimum Operating Temperature
-40 °C
Maximum Operating Temperature
+175 °C
Product details
Discrete IGBTs, Fairchild Semiconductor
IGBT Discretes & Modules, Fairchild Semiconductor
The Insulated Gate Bipolar Transistor or IGBT is a three-terminal power semiconductor device, noted for high efficiency and fast switching. The IGBT combines the simple gate-drive characteristics of the MOSFETs with the high-current and low–saturation-voltage capability of bipolar transistors by combining an isolated gate FET for the control input, and a bipolar power transistor as a switch, in a single device.